Back

INTRODUCTION

Given the speed with which scientific discoveries and research continuously expand scientific knowledge, many educators are faced with the challenge of balancing breadth of content coverage with depth of understanding.

The revised AP® Biology course addresses this challenge by shifting from a traditional “content coverage” model of instruction to one that focuses on enduring, conceptual understandings and the content that supports them. This approach will enable students to spend less time on factual recall and more time on inquiry-based learning of essential concepts, and will help them develop the reasoning skills necessary to engage in the science practices used throughout their study of AP Biology.

To foster this deeper level of learning, the breadth of content coverage in AP Biology is defined in a way that distinguishes content essential to support the enduring understandings from the many examples or applications that can overburden the course. Illustrative examples are provided that offer teachers a variety of optional instructional contexts to help their students achieve deeper understanding. Additionally, content that is outside the scope of the course and exam is also identified. Students who take an AP Biology course designed using this curriculum framework as its foundation will also develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting concepts in and across domains. The result will be readiness for the study of advanced topics in subsequent college courses — a goal of every AP course.

The revised AP Biology course is equivalent to a two-semester college introductory biology course and has been endorsed enthusiastically by higher education officials.

Big Idea 1: Evolution

1.A: Change in the genetic makeup of a population over time is evolution.

Natural selection is the major driving mechanism of evolution; the essential features of the mechanism contribute to the change in the genetic makeup of a population over time. Darwin’s theory of natural selection states that inheritable variations occur in individuals in a population. Due to competition for resources that are often limited, individuals with more favorable variations or phenotypes are more likely to survive and produce more offspring, thus passing traits to subsequent generations. Fitness, the number of surviving offspring left to produce the next generation, is a measure of evolutionary success. Individuals do not evolve, but rather, populations evolve.

The environment is always changing, there is no “perfect” genome, and a diverse gene pool is important for the long-term survival of a species. Genetic variations within a population contribute to the diversity of the gene pool. Changes in genetic information may be silent (with no observable phenotypic effects) or result in a new phenotype, which can be positive, negative or neutral to the organism. The interaction of the environment and the phenotype determines the fitness of the phenotype; thus, the environment does not direct the changes in DNA, but acts upon phenotypes that occur through random changes in DNA. These changes can involve alterations in DNA sequences, changes in gene combinations and/or the formation of new gene combinations.

Although natural selection is usually the major mechanism for evolution, genetic variation in populations can occur through other processes, including mutation, genetic drift, sexual selection and artificial selection. Inbreeding, small population size, nonrandom mating, the absence of migration, and a net lack of mutations can lead to loss of genetic diversity. Human-directed processes such as genetic engineering can also result in new genes and combinations of alleles that confer new phenotypes.

Biological evolution driven by natural selection is supported by evidence from many scientific disciplines, including geology and physical science. In addition, biochemical, morphological, and genetic information from existing and extinct organisms support the concept of natural selection. Phylogenetic trees serve as dynamic models that show common ancestry, while geographical distribution and the fossil record link past and present organisms.

1.B: Organisms are linked by lines of descent from common ancestry.

Organisms share many conserved core processes and features that are widely distributed among organisms today. These processes provide evidence that all organisms (Archaea, Bacteria, and Eukarya, both extant and extinct) are linked by lines of descent from common ancestry. Elements that are conserved across all domains of life are DNA and RNA as carriers of genetic information, a universal genetic code, and many metabolic pathways. The existence of these properties in organisms today implies that they were present in a universal ancestor and that present life evolved from a universal ancestor. Phylogenetic trees graphically model evolutionary history and can represent both acquired traits and those lost during evolution.

In eukaryotes, conserved core elements provide evidence for evolution. These features include the presence of a cytoskeleton, a nucleus, membrane-bound organelles, linear chromosomes and endomembrane systems.

1.C: Life continues to evolve within a changing environment.

Speciation and extinction have occurred throughout the Earth’s history, and life continues to evolve within a changing environment. However, the rates of speciation and extinction vary. Speciation can be slow and gradual or, as described by punctuated equilibrium, can occur in “bursts” followed by relatively quiet periods. At times of ecological stress, extinction rates can be rapid, and mass extinctions are often followed by adaptive radiation, the rapid evolution of species when new habitats open. Scientific evidence, including emergent diseases, chemical resistance and genomic data, supports the idea that evolution occurs for all organisms and that evolution explains the diversity of life on the planet.

A species can be defined as a group of individuals capable of interbreeding and exchanging genetic information to produce viable, fertile offspring. New species arise when two populations diverge from a common ancestor and become reproductively isolated. Although speciation can occur by different processes, reproductive isolation must be maintained for a species to remain distinct. Evidence that speciation has occurred includes fossil records and genomic data.

1.D: The origin of living systems is explained by natural processes.

The process of evolution explains the diversity and unity of life. A number of experimental investigations have provided evidence that the conditions early in the Earth’s history provided an environment capable of generating complex organic molecules and simple cell-like structures. For example, in the “organic soup” model, the hypothesized primitive atmosphere contained inorganic precursors from which organic molecules could have been synthesized through natural chemical reactions catalyzed by the input of energy. In turn, these molecules served as monomers (building blocks) for the formation of more complex molecules, including amino acids and nucleotides. Some models suggest that primitive life developed on biogenic surfaces, such as clay, that served as templates and catalysts for assembly of macromolecules. Under laboratory conditions, complex polymers and self-replicating molecules can spontaneously assemble. It remains an open question whether the first genetic and self-replicating material was DNA or RNA.

Big Idea 2: Cellular Processes: Energy and Communication

2.A: Growth, reproduction and maintenance of the organization of living systems require free energy and matter.

Living systems require energy to maintain order, grow and reproduce. In accordance with the laws of thermodynamics, to offset entropy, energy input must exceed energy lost from and used by an organism to maintain order. Organisms use various energy-related strategies to survive; strategies include different metabolic rates, physiological changes, and variations in reproductive and offspring-raising strategies. Not only can energy deficiencies be detrimental to individual organisms, but changes in free energy availability also can affect population size and cause disruptions at the ecosystem level.

Several means to capture, use and store free energy have evolved in organisms. Cells can capture free energy through photosynthesis and chemosynthesis. Autotrophs capture free energy from the environment, including energy present in sunlight and chemical sources, whereas heterotrophs harvest free energy from carbon compounds produced by other organisms. Through a series of coordinated reaction pathways, photosynthesis traps free energy in sunlight that, in turn, is used to produce carbohydrates from carbon dioxide and water. Cellular respiration and fermentation use free energy available from sugars and from interconnected, multistep pathways (i.e., glycolysis, the Krebs cycle and the electron transport chain) to phosphorylate ADP, producing the most common energy carrier, ATP. The free energy available in sugars can be used to drive metabolic pathways vital to cell processes. The processes of photosynthesis and cellular respiration are interdependent in their reactants and products.

Organisms must exchange matter with the environment to grow, reproduce and maintain organization. The cellular surface-to-volume ratio affects a biological system’s ability to obtain resources and eliminate waste products. Water and nutrients are essential for building new molecules.

Carbon dioxide moves from the environment to photosynthetic organisms where it is metabolized and incorporated into carbohydrates, proteins, nucleic acids or lipids. Nitrogen is essential for building nucleic acids and proteins; phosphorus is incorporated into nucleic acids, phospholipids, ATP and ADP. In aerobic organisms, oxygen serves as an electron acceptor in energy transformations.

2.B: Growth, reproduction and dynamic homeostasis require that cells create and maintain internal environments that are different from their external environments.

Cell membranes separate the internal environment of the cell from the external environment. The specialized structure of the membrane described in the fluid mosaic model allows the cell to be selectively permeable, with dynamic homeostasis maintained by the constant movement of molecules across the membrane. Passive transport does not require the input of metabolic energy because spontaneous movement of molecules occurs from high to low concentrations; examples of passive transport are osmosis, diffusion, and facilitated diffusion. Active transport requires metabolic energy and transport proteins to move molecules from low to high concentrations across a membrane. Active transport establishes concentration gradients vital for dynamic homeostasis, including sodium/potassium pumps in nerve impulse conduction and proton gradients in electron transport chains in photosynthesis and cellular respiration. The processes of endocytosis and exocytosis move large molecules from the external environment to the internal environment and vice versa, respectively.

Eukaryotic cells also maintain internal membranes that partition the cell into specialized regions so that cell processes can operate with optimal efficiency by increasing beneficial interactions, decreasing conflicting interactions and increasing surface area for chemical reactions to occur. Each compartment or membrane-bound organelle localizes reactions, including energy transformation in mitochondria and production of proteins in rough endoplasmic reticulum.

2.C: Organisms use feedback mechanisms to regulate growth and reproduction, and to maintain dynamic homeostasis.

Organisms respond to changes in their internal and external environments through behavioral and physiological mechanisms, such as photoperiodism in plants, hibernation and migration in animals, and shivering and sweating in humans. Organisms use negative feedback mechanisms to maintain their internal environments by returning the changing condition back to its target set point, while positive feedback mechanisms amplify responses. Examples of negative feedback responses include temperature regulation in animals and plant responses to drought; examples of positive feedback mechanisms are the onset of labor in childbirth and ripening of fruit. Alterations in feedback mechanisms can have deleterious effects, including diabetes and Graves’ disease in humans and the inability of plants to tolerate water stress during drought.

2.D: Growth and dynamic homeostasis of a biological system are influenced by changes in the system’s environment.

All biological systems, from cells to ecosystems, are influenced by complex biotic and abiotic interactions. The availability of resources influences activities in cells and organisms; examples include responses to cell density, biofilm(s) formation, temperature responses, and responses to nutrient and water availability. The availability of resources affects a population’s stability in size and its genetic composition; examples include birth rates versus death rates from bacteria to mammals and global distribution of food for humans.

Homeostatic mechanisms reflect both continuity due to common ancestry and change due to evolution in different environments. Supporting evidence includes a sampling of homeostatic control systems that are conserved across biological domains. Organisms have evolved various mechanisms for obtaining nutrients and getting rid of wastes, including gas exchange, osmoregulation and nitrogenous waste production. Disturbances to dynamic homeostasis effect biological processes, and plants and animals have evolved a variety of defenses against infections and other disruptions to homeostasis including immune responses. At the ecosystem level, disruptions impact the balance of the ecosystem and the interactions between specific organisms therein.

2.E: Many biological processes involved in growth, reproduction and dynamic homeostasis include temporal regulation and coordination.

Multiple mechanisms regulate the timing and coordination of molecular, physiological and behavioral events that are necessary for an organism’s development and survival. Cell differentiation results from the expression of genes for tissue-specific proteins, and the induction of transcription factors during development results in sequential gene expression. Cell differentiation also results from specific silencing of gene expression. For example, homeotic genes determine developmental patterns and sequences, and temperature and water availability determine seed germination in most plants. Genetic transplantation experiments support the link between gene expression, mutations and development. Programmed cell death (apoptosis) plays a role in normal development and differentiation (e.g., morphogenesis).

Physiological events in organisms can involve interactions between environmental stimuli and internal molecular signals; phototropism and photoperiodism in plants and circadian rhythms and seasonal responses in animals are examples.

Timing and coordination of behavior are also regulated by several means; individuals can act on information and communicate it to others, and responses to information are vital to natural selection. Examples include behaviors in animals triggered by environmental cues (hibernation, migration and estivation), courtship rituals and other visual displays, and photoperiodism in plants due to changes in critical night length.

Communication and cooperative behavior within or between populations contributes to the survival of individuals and the population. For example, changes in resource availability can lead to fruiting body formation in certain bacteria and fungi and niche partitioning.

Big Idea 3: Genetics and Information Transfer

3.A: Heritable information provides for continuity of life.

The organizational basis of all living systems is heritable information. The proper storage and transfer of this information are critical for life to continue at the cell, organism and species levels. Reproduction occurs at the cellular and organismal levels. In order for daughter cells to continue subsequent generational cycles of reproduction or replication, each progeny needs to receive heritable genetic instructions from the parental source. This information is stored and passed to the subsequent generation via DNA. Viruses, as exceptional entities, can contain either DNA or RNA as heritable genetic information. The chemical structures of both DNA and RNA provide mechanisms that ensure information is preserved and passed to subsequent generations. There are important chemical and structural differences between DNA and RNA that result in different stabilities and modes of replication. In order for information stored in DNA to direct cellular processes, the information needs to be transcribed (DNA→RNA) and in many cases, translated (RNA→protein). The products of these processes determine metabolism and cellular activities and, thus, the phenotypes upon which evolution operates.

In eukaryotic organisms, genetic information is packaged into chromosomes, which carry essential heritable information that must be passed to daughter cells. Mitosis provides a mechanism that ensures each daughter cell receives an identical and complete set of chromosomes and that ensures fidelity in the transmission of heritable information. Mitosis allows for asexual reproduction of organisms in which daughter cells are genetically identical to the parental cell and allows for genetic information transfer to subsequent generations. Both unicellular and multicellular organisms have various mechanisms that increase genetic variation.

Sexual reproduction of diploid organisms involves the recombination of heritable information from both parents through fusion of gametes during fertilization. The two gametes that fuse to form a new progeny zygote each contain a single set (1n) of chromosomes. Meiosis reduces the number of chromosomes from diploid (2n) to haploid (1n) by following a single replication with two divisions. The random assortment of maternal and paternal chromosomes in meiosis and exchanges between sister chromosomes increase genetic variation; thus, the four gametes, while carrying the same number of chromosomes, are genetically unique with respect to individual alleles and allele combinations. The combination of these gametes at fertilization reestablishes the diploid nature of the organism and provides an additional mechanism for generating genetic variation, with every zygote being genetically different. Natural selection operates on populations through the phenotypic differences (traits) that individuals display; meiosis followed by fertilization provides a spectrum of possible phenotypes on which natural selection acts, and variation contributes to the long-term continuation of species.

Some phenotypes are products of action from single genes. These single gene traits provided the experimental system through which Mendel was able to describe a model of inheritance. The processes that chromosomes undergo during meiosis provide a mechanism that accounts for the random distribution of traits, the independence of traits, and the fact that some traits tend to stay together as they are transmitted from parent to offspring. Mendelian genetics can be applied to many phenotypes, including some human genetic disorders. Ethical, social and medical issues can surround such genetic disorders.

Whereas some traits are determined by the actions of single genes, most traits result from the interactions of multiple genes products or interactions between gene products and the environment. These traits often exhibit a spectrum of phenotypic properties that results in a wider range of observable traits, including weight, height and coat color in animals.

3.B: Expression of genetic information involves cellular and molecular mechanisms.

Structure and function in biology result from the presence of genetic information and the correct expression of this information. The expression of the genetic material controls cell products, and these products determine the metabolism and nature of the cell. Most cells within an organism contain the same set of genetic instructions, but the differential expression of specific genes determines the specialization of cells. Some genes are continually expressed, while the expression of most is regulated; regulation allows more efficient energy utilization, resulting in increased metabolic fitness. Gene expression is controlled by environmental signals and developmental cascades that involve both regulatory and structural genes. A variety of different gene regulatory systems are found in nature. Two of the best studied are the inducible and the repressible regulatory systems (i.e., operons) in bacteria, and several regulatory pathways that are conserved across phyla use a combination of positive and negative regulatory motifs. In eukaryotes, gene regulation and expression are more complex and involve many factors, including a suite of regulatory molecules.

Multicellular organisms have developmental pathways from zygote to adult, yet all cells in the organism start with the same complement of DNA. The developmental sequences are predominately determined and programmed by differential gene expression. Which gene gets expressed and the level of expression are determined by both internal and external signals. In multicellular organisms, cell-to-cell interactions and cell-to-cell signaling via small molecules modulate and control gene expression and cell function. For example, morphogens help to determine spatial development, and hormones can influence cell metabolism.

Developmental gene sequences have an evolutionary origin and are conserved across species; for example, HOX genes are present in genome sequences from Drosophila to humans. Errors or changes in regulation of genes involved in development often lead to severe, detrimental and even bizarre consequences.

3.C: The processing of genetic information is imperfect and is a source of genetic variation.

Genetic information is a set of instructions necessary for the survival, growth and reproduction of an organism. In order for the information to be useful, it needs to be processed by the cell. Processing includes replication, decoding and transfer of the information. When genetic information changes, either through natural processes or genetic engineering, the results may be observable changes in the organism. At the molecular level, these changes may be the result of mutations in the genetic material, the effects of which may be seen when the information is processed to yield a nucleic acid or a polypeptide. The processes of transcription, mRNA processing and translation are imperfect, and errors can occur and may, in certain cases, alter phenotypes. However, these errors are random and are not heritable except in the case of RNA viruses where the random errors change the genetic information of the virus. External factors in the environment can affect the degree of, or the potential for increased probability for, errors in the information and processing. Cellular mechanisms that usually correct errors have evolved. Genetic variations at the genome level, when expressed as phenotypes, are subject to natural selection.

Since all organisms, as well as viruses, exist in a dynamic environment, mechanisms that increase genetic variation are vital for a species’ ability to adapt to a changing environment. In a meiotic organism, the transfer process, whereby each gamete receives one set of chromosomes, ensures that this set is unique and different from that of the parent. Random processes such as the transposition of DNA regions (“jumping genes”) occur in all biological domains. Bacteria divide by binary fission and do not have the random assortment processes that occur in eukaryotic organisms. Nonetheless, mechanisms have evolved in bacteria that ensure genetic variation beyond the variation that is introduced through normal DNA metabolism, e.g., replication, repair and recombination. Bacterial genetic information can be transmitted or exchanged laterally through a variety of processes, including conjugation, transduction and transformation. This type of exchange yields rapid dissemination of new phenotypes within and between bacterial populations, allowing for rapid evolution.

The basic structure of viruses includes a protein capsid that surrounds and protects the genetic information (genome) that can be either DNA or RNA. Viruses have a mechanism of replication that is dependent on the host metabolic machinery to produce necessary viral components and viral genetic material. Some classes of viruses use RNA without a DNA intermediate; however, retroviruses, such as HIV, use a DNA intermediate for replication of their genetic material. Some viruses introduce variation into the host genetic material. When the host is bacterial, it is referred to as lysogenesis; whereas in eukaryotic cells, this is referred to as transformation. Since viruses use the host metabolic pathways, they experience the same potential as the host for genetic variation that results from DNA metabolism.

3.D: Cells communicate by generating, transmitting and receiving chemical signals.

For cells to function in a biological system, they must communicate with other cells and respond to their external environment. Cell-to-cell communication is ubiquitous in biological systems, from archaea and bacteria to multicellular organisms. The basic chemical processes by which cells communicate are shared across evolutionary lines of descent, and communication schemes are the products of evolution. Cell-to-cell communication is a component of higher-order biological organization and responses. In multicellular organisms, cell-to-cell and environment-to-cell chemical signaling pathways direct complex processes, ranging from cell and organ differentiation to whole organism physiological responses and behaviors. Certain signal pathways involve direct cell-to-cell contact, operate over very short distances, and may be determined by the structure of the organism or organelle, including plasmodesmata in plants and receptor-to-recognition protein interaction in the vertebrate immune system.

Chemical signals allow cells to communicate without physical contact. The distance between the signal generating cell(s) and the responding cell can be small or large. In this type of signaling pathway, there is often a gradient response, and threshold concentrations are required to trigger the communication pathway.

Chemical signaling pathways in cells are determined by the properties of the molecules involved, the concentrations of signal and receptor molecules, and the binding affinities (fit) between signal and receptor. The signal can be a molecule or a physical or environmental factor. At the cellular level, the receptor is a protein with specificity for the signal molecule; this allows the response pathway to be specific and appropriate. The receptor protein often is the initiation point for a signal cascade that ultimately results in a change in gene expression, protein activity, or physiological state of the cell or organism, including cell death (apoptosis). Defects in any part of the signal pathway often lead to severe or detrimental conditions such as faulty development, metabolic diseases, cancer or death.

Understanding signaling pathways allows humans to modify and manipulate biological systems and physiology. An understanding of the human endocrine system, for example, allowed the development of birth control methods, as well as medicines that control depression, blood pressure and metabolism. Other examples include the ability to control/ modify ripening in fruit, agricultural production (growth hormones) and biofilm control.

3.E: Transmission of information results in changes within and between biological systems.

Evolution operates on genetic information that is passed to subsequent generations. However, transmission of nonheritable information also determines critical roles that influence behavior within and between cells, organisms and populations. These responses are dependent upon or influenced by underlying genetic information, and decoding in many cases is complex and affected by external conditions. For example, biological rhythms, mating behaviors, flowering, animal communications and social structures are dependent on and elicited by external signals and may encompass a range of responses and behaviors.

Organ systems have evolved that sense and process external information to facilitate and enhance survival, growth and reproduction in multicellular organisms. These include sensory systems that monitor and detect physical and chemical signals from the environment and other individuals in the population and that influence an animal’s well-being. The nervous system interacts with sensory and internal body systems to coordinate responses and behaviors, ranging from movement to metabolism to respiration. Loss of function and coordination within the nervous system often results in severe consequences, including changes in behavior, loss of body functions and even death.

Knowledge and understanding of the structures and functions of the nervous system are needed to understand this coordination. The features of an animal’s nervous system are evolutionarily conserved, with the basic cellular structure of neurons the same across species. The physiological and cellular processes for signal formation and propagation involve specialized membrane proteins, signaling molecules and ATP. Neurological signals can operate and coordinate responses across significant distances within an organism. The brain serves as a master neurological center for processing information and directing responses, and different regions of the brain serve different functions. Structures and associated functions for animal brains are products of evolution, and increasing complexity follows evolutionary lines.

Populations of organisms exist in communities. Individual behavior influences population behavior, and both are the products of information recognition, processing and transmission. Communication among individuals within a population may increase the long-term success of the population. Cooperative behavior within a population provides benefits to the population and to the individuals within the population. Examples of benefits include protection from predators, acquisition of prey and resources, sexual reproduction, recognition of offspring and genetic relatedness, and transmission of learned responses.

Big Idea 4: Interactions

4.A: Interactions within biological systems lead to complex properties.

All biological systems, from cells to ecosystems, are composed of parts that interact with each other. When this happens, the resulting interactions enable characteristics not found in the individual parts alone. In other words, “the whole is greater than the sum of its parts,” a phenomenon sometimes referred to as “emergent properties.”

At the molecular level, the properties of a polymer are determined by its subcomponents and their interactions. For example, a DNA molecule is comprised of a series of nucleotides that can be linked together in various sequences; the resulting polymer carries hereditary material for the cell, including information that controls cellular activities. Other polymers important to life include carbohydrates, lipids and proteins. The interactions between the constituent parts of polymers, their order, their molecular orientation and their interactions with their environment define the structure and function of the polymer.

At the cellular level, organelles interact with each other and their environment as part of a coordinated system that allows cells to live, grow and reproduce. For example, chloroplasts produce trioses through the process of photosynthesis; however, once trioses are synthesized and exported from the chloroplast, they may be packaged by the Golgi body and distributed to the edge of the cell where they serve as a building block for cellulose fibers comprising the cell wall. Similarly, several organelles are involved in the manufacture and export of protein. The repertory of subcellular organelles determines cell structure and differentiation; for instance, the components of plant leaf cells are different from the components of plant root cells, and the components of human liver cells are different from those in the retina. Thus, myriad interactions of different parts at the subcellular level determine the functioning of the entire cell, which would not happen with the activities of individual organelles alone.

In development, interactions between regulated gene expression and external stimuli, such as temperature or nutrient levels or signal molecules, result in specialization of cells, organs and tissues. Differentiation of the germ layers during vertebrate gastrulation is an example of one such divergence. The progression of stem cells to terminal cells can also be explained by the interaction of stimuli and genes. Additionally, cells, organs and tissues may change due to changes in gene expression triggered by internal cues, including regulatory proteins and growth factors, which result in the structural and functional divergence of cells.

Organisms exhibit complex properties due to interactions of their constituent parts, and interactions and coordination between organs and organ systems provide essential biological activities for the organism as a whole. Examples include the vessels and hearts of animals and the roots and shoots of plants. Environmental factors such as temperature can trigger responses in individual organs that, in turn, affect the entire organism.

Interactions between populations within communities also lead to complex properties. As environmental conditions change in time and space, the structure of the community changes both physically and biologically, resulting in a mosaic in the landscape (variety or patterns ) in a community. Communities are comprised of different populations of organisms that interact with each other in either negative or positive ways (e.g., competition, parasitism and mutualism); community ecology seeks to understand the manner in which groupings of species are distributed in nature, and how they are influenced by their abiotic environment and species interactions. The physical structure of a community is affected by abiotic factors, such as the depth and flow of water in a stream, and also by the spatial distribution of organisms, such as in the canopy of trees. The mix of species in terms of both the number of individuals and the diversity of species defines the structure of the community. Mathematical or computer models can be used to illustrate and investigate interactions of populations within a community and the effects of environmental impacts on a community. Community change resulting from disturbances sometimes follows a pattern (e.g., succession following a wildfire), and in other cases is random and unpredictable (e.g., founder effect).

At the ecosystem level, interactions among living organisms and with their environment result in the movement of matter and energy. Ecosystems include producers, consumers, decomposers and a pool of organic matter, plus the physiochemical environment that provides the living conditions for the biotic components. Matter, but not energy, can be recycled within an ecosystem via biogeochemical cycles. Energy flows through the system and can be converted from one type to another, e.g., energy available in sunlight is converted to chemical bond energy via photosynthesis. Understanding individual organisms in relation to the environment and the diverse interactions that populations have with one another (e.g., food chains and webs) informs the development of ecosystem models; models allow us to identify the impact of changes in biotic and abiotic factors. Human activities affect ecosystems on local, regional and global scales.

4.B: Competition and cooperation are important aspects of biological systems.

Competition and cooperation play important roles in the activities of biological systems at all levels of organization. Living systems require a myriad of chemical reactions on a constant basis, and each of these chemical reactions relies on the cooperation between a particular enzyme and specific substrates, coenzymes and cofactors. Chemical inhibitors may compete for the active sites of enzymes that, in turn, affect the ability of the enzyme to catalyze its chemical reactions. Thus, interactions between molecules affect their structure and function. Other examples of this phenomenon include receptor-ligand interactions and changes in protein structure due to amino acid sequence.

Similar cells may compete with each other when resources are limited; for example, organisms produce many more spores or seeds than will germinate. Competition for resources also determines which organisms are successful and produce offspring. In the vertebrate immune system, competition via antigen-binding sites determines which B-cell lineages are stimulated to reproduce.

The cooperation of parts extends to the organism that depends on the coordination of organs and organ systems, such as between the digestive and excretory systems of an animal or the roots and shoots of a plant. Cooperation within organisms increases efficiency in the use of matter and energy. For example, without the coordination and cooperation of its shoot and roots, a plant would be unable to survive if its root system was too small to absorb water to replace the water lost through transpiration by the shoot. Similarly, exchange of oxygen and carbon dioxide in an animal depends on the functioning of the respiratory and circulatory systems. Furthermore, population interactions influence patterns of species distribution and abundance, and global distribution of ecosystems changes substantially over time.

4.C: Naturally occurring diversity among and between components within biological systems affects interactions with the environment.

A biological system that possesses many different components often has greater flexibility to respond to changes in its environment. This phenomenon is sometimes referred to as “robustness.” Variation in molecular units provides cells with a wider range of functions; cells with multiple copies of genes or heterozygous genes possess a wider range of functions compared to cells with less genetic diversity, while cells with myriad enzymes can catalyze myriad chemical reactions.

Environmental factors influence the phenotypic expression of an organism’s genotype. In humans, weight and height are examples of complex traits that can be influenced by environmental conditions. However, even simple single gene traits can be influenced by the environment; for example, flower color in some species of plants is dependent upon the pH of the environment. Some organisms possess the ability to respond flexibly to environmental signals to yield phenotypes that allow them to adapt to changes in the environment in which they live. Environmental factors such as temperature or density can affect sex determination in some animals, while parthenogenesis can be triggered by reproductive isolation. Plant seed dormancy can increase the survival of a species, and some viruses possess both lysogenic and lytic life cycles.

The level of variation in a population affects its dynamics. The ability of a population to respond to a changing environment (fitness) is often measured in terms of genomic diversity. Species with little genetic diversity, such as a population of plants that reproduces asexually or a very small population exhibiting a genetic bottleneck effect, are at risk with regard to long-term success and survival. Diversity of species within an ecosystem may influence the stability of the ecosystem. Ecosystems with little species diversity are often less resilient to changes in the environment. Keystone species, predators, and essential abiotic and biotic factors contribute to maintaining the diversity of an ecosystem. For example, the removal of sea otters or mollusks can drastically affect a marine ecosystem, and the introduction of an exotic plant or animal species can likewise affect the stability of a terrestrial ecosystem.